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Efficient Modal Analysis of Waveguide Filters

Including the Orthogonal Mode Coupling
Elements by an MM/FE Method

R. Beyer and F. Arndt, Fellow, IEEE

Abstract— An efficient hybrid mode-matching finite element
(MM/FE) method is applied for the rigorous analysis of wave-
guide filters composed of homogeneous standard waveguide cavi-
ties together with waveguide coupling sections of nearly arbitrary
cross-section. To demonstrate the efficiency of the method, a
simple two-pole circular waveguide dual-mode filter is analyzed
where the orthogonal modes are coupled by obliquely positioned
rectangular post elements with rounded edges and the coupling
to the rectangular port waveguides is provided by rectangular
irises with rounded corners. Moreover, a four-pole filter is shown
where the dual-mode coupling is achieved by asymmetrically
located irises. The theory is verified by excellent agreement with
measurements.

I. INTRODUCTION

HE AVAILABILITY of reliable and efficient CAD tools

for waveguide components is of high importance for
many applications, such as for space communication purposes
where accuracy, compactness, and development time are very
often the most critical component design factors [1]. In order
to achieve the required accuracy, the consequent utilization of
field-theory-based models is indispensable. For components
composed of rectangular and circular waveguide structures,
efficient mode-matching (MM) key-building block models
have already been developed [2], [3]. For the analysis of more
complicated structures, pure numerical methods that require
a rather high numerical effort, such as the three-dimensional
finite element method (FEM), are typically used [4].

Many complicated waveguide components, however, may
be considered to be composed of homogeneous sections where
most parts are standard geometries and merely a few require
the treatment with computationally more intensive methods.
This aspect allows the development of flexible but efficient
CAD tools. More recently, a combined mode matching and
finite difference method has been proposed [5]. In our paper,
a combined mode matching finite element (MM/FE) method is
applied that allows the flexible and reliable modeling of even
very small obstacles, such as coupling elements in dual-mode
filters, due to the typical triangular FEM mesh generator.

The two-dimensional eigenvalue problem of ridged circular
waveguide coupling sections has been solved recently by a FE
method [6], [7]. Moreover, a FE scattering matrix method has
been already applied for modeling arbitrarily shaped irises in
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circular waveguides [7]. However, complete three-dimensional
components, such as circular waveguide dual-mode filters,
have not yet been investigated by such methods so far. The
rigorous multi-mode scattering matrix of dual-mode filters
obtained by the MM/FE method, together with the already
available rigorous T-junction and iris key-building blocks,
allows the overall CAD of manifold multiplexers, taking into
account the significant higher-order mode interaction effects
of such structures.

II. THEORY

The transverse electric Et and magnetic fields ﬁt in each
homogeneous waveguide section are represented by scalar
potentials ¥H and ¥F in the following way:
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where H and F denote the TE- and TM-modes, respectively,
o and b the normalized amplitudes of the waves propagating
in +z or —z direction, i, is the unit vector in +2z direction,
and V. is the transverse part of the nabla operator. The scalar
potentials U:F are solutions of the transverse homogeneous
Helmholtz equation, ¥# and ¥¥ satisfy Dirichlet and Neu-
mann boundary conditions on perfectly conducting electric
I'g, and magnetic walls I'y; show the usual orthonormal
properties.

The initial mesh for the two-dimensional FEM solution of
the Helmholtz equation for the sections with nearly arbitrary
geometry is generated by the Delaunay triangulation [8]; the
mesh can be locally refined and optionally smoothed. The
potentials ¥ are approximated by their nodal values ¥k and
first-order Lagrangian interpolation polynomials Nx (z,y) [9]
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by

U(z,y) ~ Y Uk Nk(z,y). )
K

Inserting (2) in the appropriate functional for the Helmholtz
equation

F(¥) = / / [(Ve0)? — E202dQ, 3)
Q

where k2 = k? — (32, k is the free space wave number, and
extremizing (3) with respect to the nodal vector ¥7, leads to
the matrix equation
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The generalized matrix eigenvalue problem (4) is reduced to
tridiagonal form by the Lanczos procedure [9] with application
of a shift and invert technique to accelerate convergence.
Full Gram-Schmidt-type reorthogonalization guarantees the
orthogonality of even higher-order multiple degenerate modes.
The system of equations arising in each Lanczos iteration step
is solved by sparse matrix Cholesky decomposition using the
minimum degree algorithm [10].

Matching the transverse electro-magnetic fields E, and
H, at the common interface of a general waveguide step
discontinuity (see Fig. 1) leads to. the set of matrix equations
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for the amplitude vectors ay ;; and by sy of the incident and
scattered waves in waveguide I and I7, respectively. From this
set of equations, the generalized scattering matrix (GSM) of
the complete step discontinuity can be obtained. The GSM of
the whole structure is calculated by combination of the GSM’s
of the step discontinuities with the GSM’s of the homogeneous
waveguide sections between them [2], [3]. In this way, rather
complicated structures can also be analyzed, such as filters of
more than 2-pole complexity.
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Fig. 1. Waveguide step discontinuity with incident and scattered waves.
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Fig. 2. Calculated and measured return and insertion losses of a circular
waveguide dual-mode filter composed of an available cavity structure with
three sections. Orthomode coupling provided, therefore, by two rectangular
post elements with rounded edges, in a 30° and 60° position, respectively.
Filter dimensions in mm: WR62 waveguide in- and output ports (15.799x
7.899); irises: 9.5 x 5.5, radius 1.0, thickness ¢ = 0.15; coupling posts:
width 1.0, thickness ¢ = 0.15, depth 2.165, radius of rounded edges 0.5;
resonator lengths: first section 16.605, second section 17.219, third section
16.599, radius 6.985.

[T1I. RESULTS

For the verification of the theory, a dual-mode filter example
has been chosen, Fig. 2, where the hardware was already
available: a circular waveguide cavity consisting of three
sections, rectangular WR62 waveguide (15.799 mm x 7.899
mm) in- and output ports twisted by 90° and rectangular
coupling irises with rounded corners. For the coupling of
the orthogonal modes, because of the already available triple
cavity section, two rectangular post elements with rounded
edges in a 30° (first element) and 60° position (second
element), respectively, have been chosen (Fig. 2). These post
elements have been fabricated by etching techniques. Excellent
agreement between the calculated and measured insertion-and
return loss is demonstrated.

For the final analysis of the filter in Fig. 2, all higher-
order modes have been considered with a cut-off frequency of
approximately up to 15 fg, where fo is the center frequency
of the filter. The computation time per frequency point for the
final analysis of the filter was then about 70 sec on a low-
cost IBM-RS6000-58F workstation. The efficient conjugate
gradient (CG) method [11] for the systems of equations (5)
of the whole circular waveguide—ridged waveguide—circular
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Fig. 3. Calculated return and insertion losses of a circular waveguide
four-pole dual-mode filter with asymmetrically located irises. Filter dimen-
sions in mm: WR75 waveguide in- and output ports (19.05 x 9.525); irises
1 and 3: 6.8 X 6.8, corner radius 0.5, thickness ¢ = 0.1, located at z = -2.0,
y = -2.0; iris 2: 3.6 x 3.6, corner radius 0.5, thickness ¢ — 0.1, located at
z = 3.05, y = 3.05; resonator length: both sections 24.5; radius: 10.

waveguide transition was applied. For the optimization of the
filter, higher-order modes have been considered merely with
a cut-off frequency of 10 f,. Twenty-five frequency sample
points and 100 iteration steps were necessary.

For also demonstrating the applicability of -the presented
technique for more complicated structures, Fig. 3 shows the
design results of a not-yet-optimized four-pole filter where
the dual-mode coupling is provided by asymmetrically located
irises.

IV. CONCLUSION

An efficient hybrid mode-matching finite element method
(MM/FEM) is applied for the rigorous modal analysis of
complete circular waveguide dual-mode filters that can be

coupled by irises with arbitrarily shaped cross-sections. The
dual-mode coupling is provided either by asymmetrically
located irises or, more traditionally, by obliquely positioned
rectangular post elements with rounded edges that are an
appropriate model for the usual coupling screws. The theory
is verified by excellent agreement with measurements.
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